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Abstract-“Death” is often the largest issue people 
must face, but it is even more so in the medical field. 
Accurate forecasting of death not only has positive 
significance in treatment but also great help the 
doctor-patient relationship and the economics of 
medical treatment. However, accurate forecasting is 
not easy, so many studies to generate forecasting 
systems have been conducted.  
In this experiment, a fatal dose anesthetics, urethane, 
was injected into the abdomen of rats. Blood 
pressure waves in the rats’ caudate arteries were 
then recorded during the dying process, and an 
analysis was conducted on the harmonics of the 
Fourier’s transform obtained. 
Of the 24 rats used in the experiment, 18 died and 6 
survived. When a Kappa test was performed on the 
coefficient variation of the fourth harmonic 
magnitude(C.V.4) for the two groups of rats, it was 
found that when C.V.4 exceeded 1.7, the Kappa value 
was 0.75. This shows that during the death process 
the coefficience variation of the fourth harmonic 
magnitude clearly increases.  
 

I. INTRODUCTION 
 

In both philosophy and medicine, “death” is a 
major issue. The questions, “Will this person die?” 
and “When will this person die?” are some of the 
most difficult questions doctors might face. 
“Sudden death” is an even worse nightmare for 
doctors. However, these unavoidable problems 
and risks must be seriously addressed in intensive 
care wards, with anesthetized patients undergoing 
surgery, with end-stage cancer patients in hospices, 
and so on. Because these questions affect the 
course of treatment as well as the patients’ 
families, there are broader implications in terms of 
medical economics and society [1, 2]. 

Nevertheless, accurate forecasting of death is 
not an easy matter, so many studies to generate 
forecasting systems have been conducted. These 
include assessment of patient condition near death 
[2-5], APACHE scores, SAPS scores [1], MPM 
scores [1, 6], PPI scores [7], even the use of neural 
networks to assist forecasting [8]. However, 
because most of these forecasting systems are 
qualitative, there are differences in accuracy, 
limits due to discipline, or variance due to ethnic 
differences [9-10]. Thus, to establish broad, 

accurate forecasting of death, an objective 
quantitative indicator may be needed. 
 

Blood pressure, pulse, blood oxygen levels, 
body temperature, and breath rate are 
frequently-used physiological quantitative 
indicators, but these cannot provide enough 
information because they are usually kept within 
“living range” due to the intervention of treatment. 
Thus, analyzing these quantitative indicators has 
become a new direction of research [11-12]. 

Since death is caused by the failure of one or 
several organ systems, could the failure or death of 
these organs be revealed through blood pressure 
waves? The "Radial Coupled Resonance Theory” 
provided a positive connection: several 
experiments [13-17] have shown the effect that 
different organs have on various blood pressure 
harmonic wave effects. We can thus infer that the 
failure of various organs in the death process can 
also be expressed through variations in the various 
harmonics of blood pressure waves. The object of 
this study is to verify this hypothesis.  
 

II. METHODOLOGY 
 

Sprague Dawley rats weighing 300 to 350 g 
anesthetized with Urethane (1.2 mg/g body 
weight). The caudate arteries were cannulated via 
a 3/4 inch(No.25G) I.V. catheter. Blood pressure 
signals were recorded through a P10 EZ pressure 
gauge. The system’s tested level frequency 
response could reach 60 Hz, and the signal, after 
amplification through a Gould amplifier and 
processing through an A-D converter, was input 
into an IBM PC for analysis [15-17]. 

After each rat was anesthetized, pressure 
wave readings were taken once per minute. Each 
data contented 7-10 blood pressure pulses. After 
Fourier’s transform, the magnitude of the  blood 
pressure pulses were averaged. The coefficience 
variation was calculated by standard variation 
divided average mean. Until the blood pressure 
waves had stabilized for 30 minutes, then the fatal 
dose of urethane was injected into the rats’ 
abdomens. 

The validity of forecasting was analysis by 
Kappa value(k ) and X2-test. 
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k = Actual Agreement beyond chance/ 
Potential Agreement beyond chance 

 
When k=0-0.2:slight agreement; 

0.2-0.4:fair;0.4-0.6:moderate;0.6-0.8: substantial; 
0.8-1.0: almost 

In the X2-test: X2= ∑ [(O-E)2/E], where O 

is the observed value; E the expected value. From 
the X2  value, we could find out the p value, the 
chance of non-correlation[18,19]. 

      
III. RESULTS 

 
Of the 24 rats used in this experiment, 18 died 

and 6 survived. Fourier analysis conducted on the 
various wave harmonics showed that the maximal 
coefficience variations of the fourth harmonic 
magnitude of the 18 rats that died were (9.39 ±  
2.76) higher than that of the 6 rats that survived 
(1.43 ± 0.47).  

When a Kappa test was performed on the 
coefficience variation of the fourth harmonic 
magnitude(C.V.4) for the two groups of rats, it was 
found that when the C.V.4 exceeded 1.7, the 
Kappa value was 0.75 (Table 1). 

We also use X2-test by X2=∑[(O-E)2/E]. In 

this study X2=14.40 which means P< 0.001. 
   

TABLE I 

KAPPA TEST VALUE OF COEFFICIENCE VARIATION OF THE FOURTH 

HARMONIC MAGNITUDE  

RATS  

DIE LIVING  

C.V. 4>1.7 18 (15)  2  (5) 20 
 

C.V. 4<1.7 0  (3)  4  (1) 4 

TOTAL 
 

18 6 24 
 

The mumbers in parenthese ( ) are the expected value  
Observed agreement , accuracy rate = 0.92 
Agreement expected on the basis of chance = 0.67 
Kappa value =0.75 
 

IV. DISCUSSION 
 

During the dying process of the rats, the 
coefficience variation of the fourth harmonic 
magnitude clearly increased, and as death 
approached, the variation became more evident. 
This phenomenon verifies a hypothesis derived 

from the "Radial Coupled Resonance Theory” and 
related experiments [13-17]: that the failure of 
various organs during the death process will be 
expressed through changes in the harmonics of 
blood pressure waves. Therefore, analysis of these 
wave harmonics may be used as a quantitative 
indicator that reflects physiological changes 
during the dying process. 

In clinical practice, systolic and diastolic 
blood pressure are important physiological 
indicators, and a drop in blood pressure is viewed 
as an important danger sign. However, due to the 
intervention of treatment, these indicators are 
usually kept within “living range.” In this 
experiment, the rats’ dying process was also 
accompanied by a drop in blood pressure, 
especially when the diastolic blood pressure was 
lower than 40 mmHg, but this phenomenon did 
not indicate that death was inevitable. In the 
experiment, if the coefficience variation of the 
fourth harmonic magnitude of blood pressure 
waves did not show a clear increase, the drop in 
blood pressure could often stabilize on its own and 
even ris e again. However, when the coefficience 
variation of the fourth harmonic magnitude 
showed a clear increase, then the drop in blood 
pressure became irreversible, and of course death 
would occur. Therefore, analysis of the harmonics 
of blood pressure waves provides a more accurate 
reflection of the dying process than traditional 
systolic and diastolic blood pressure measurement. 

Therefore, by analysis of blood pressure wave 
harmonics, we can find a quantitative indicator 
that can be used for the development of a 
non-invasive means to provide instant and 
accurate forecasts or advance warnings of death.  

Since this experiment was conducted on rats, 
further studies need to be conducted on other 
animal species or using other death-causing 
factors. The importance of various wave 
harmonics also awaits further analysis, before a 
broad, accurate, objective indicator to forecast 
death can be expected.  
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